📜  查找范围 [L, R] 中具有 X 峰和 Y 谷的数字的排列

📅  最后修改于: 2022-05-13 01:56:07.196000             🧑  作者: Mango

查找范围 [L, R] 中具有 X 峰和 Y 谷的数字的排列

给定整数L、R、XY ,使得 (R > L ≥ 1)、(X ≥ 0) 和 (Y ≥ 0)。求范围[L, R]中数字的排列,使得排列中恰好存在X 峰Y 谷。如果找到排列,则打印 Yes 和排列。否则打印编号。

注意:在数组arr[]中,如果arr[i-1] < arr[i] > arr[i+1]在第i 个索引处有一个峰值,如果 arr[i-1] > arr [ i 在第 i 个索引处有一个谷值] < arr[i+1],其中0< i < N

例子:

处理方法:可以有以下五种情况。遵循针对每种情况提到的方法。

Case-1(没有可能的排列):排列的第一个和最后一个元素对峰和谷的数量没有贡献。

  • 因此,如果(X + Y) > (R – L – 1)将不存在满足峰和谷数的排列。
  • 此外,如果(X – Y) > 1的绝对值,则不会有这样的排列,因为两个峰之间正好有 1 个谷,反之亦然。

案例2(X = 0,Y = 0):按照下面提到的步骤。

  • 创建一个大小为(R – L + 1)的数组arr[]并将范围[L, R]中的数字按排序顺序存储在数组中。
  • 打印数组。

Case-3(X > Y):按照以下步骤进行:

  • 创建一个大小为(R – L + 1)的数组arr[] ,该数组由[L, R]范围内的数字按排序顺序组成。
  • 考虑最后 (X + Y – 1) 个元素来分配X峰和Y谷。
  • i = (N – 2)迭代到i = (N – (X + Y – 1)) 。其中N = (R – L + 1)
    • 在每次迭代中,将 arr[i] 与 arr[i+1] 交换,并将i减 2。
  • 打印数组

案例 4(X < Y):按照以下步骤操作:

  • 创建一个大小为(R – L + 1)的数组arr[] ,该数组由[L, R]范围内的数字按排序顺序组成。
  • 考虑首先(X + Y)元素来分配X峰和Y谷。
  • i = 1迭代到i = (X+Y)
    • 对于每次迭代,将 arr[i] 与 arr[i-1] 交换,并将i增加 2。
  • 打印数组。

案例 5(X = Y):按照以下步骤操作:

  • 创建一个长度为(R – L + 1)的数组arr[] ,该数组由[L, R]范围内的数字按排序顺序组成。
  • 考虑首先(X+Y)元素来分配(X-1)峰和Y谷。
  • i = 1迭代到i = (X+Y)。
    • 对于每次迭代,将 arr[i] 与 arr[i-1] 交换,并将i增加 2。
  • 迭代完成后,交换数组的最后两个元素以获得更多峰值。
  • 打印数组。

下面给出了上述方法的实现:

C++
// C++ code to implement the above approach
#include 
using namespace std;
 
// Utility function to build the permutation
void BuildMountainArray(int L, int R, int X, int Y)
{
    int N = (R - L + 1);
    // Case-1: permutation cannot be built
    if (((X + Y) > (N - 2)) || abs(X - Y) > 1) {
        cout << "No" << endl;
    }
    else {
        // Vector to store the permutation
        vector res(N, 0);
        for (int index = 0; index < N;
             index++) {
            res[index] = L + index;
        }
 
        // Case-2: X = 0, Y = 0
        if (X == 0 && Y == 0) {
            cout << "Yes" << endl;
            for (int index = 0; index < N;
                 index++) {
                cout << res[index] << " ";
            }
            cout << endl;
            return;
        }
 
        // Case-3: X > Y
        // Consider last (X+Y+1) elements
        else if (X > Y) {
            for (int index = N - 2;
                 index >= (N - (X + Y + 1));
                 index -= 2) {
                swap(res[index],
                     res[index + 1]);
            }
        }
 
        // Case-4: X < Y
        // Consider first (X+Y) elements
        else if (Y > X) {
            for (int index = 1; index <=
                 (X + Y); index += 2) {
                swap(res[index],
                     res[index - 1]);
            }
        }
        else {
            // Case-5: X = Y
            // Consider first (X+Y) elements,
            // it will give (X-1) peaks
            // and Y valleys
            for (int index = 1; index <=
                 (X + Y); index += 2) {
                swap(res[index],
                     res[index - 1]);
            }
            // Swap last 2 elements,
            // to get 1 more peak
            swap(res[N - 2], res[N - 1]);
        }
 
        // Print the required array
        cout << "Yes" << endl;
        for (int index = 0; index < N;
             index++) {
            cout << res[index] << " ";
        }
        cout << endl;
    }
}
 
// Driver code
int main()
{
    // Input
    int L = 1, R = 3, X = 1, Y = 0;
 
    // Function call
    BuildMountainArray(L, R, X, Y);
    return 0;
}


Java
// Java code for the above approach
import java.io.*;
 
class GFG {
 
  // Utility function to build the permutation
  static void BuildMountainArray(int L, int R, int X,
                                 int Y)
  {
    int N = (R - L + 1);
 
    // Case-1: permutation cannot be built
    if (((X + Y) > (N - 2)) || Math.abs(X - Y) > 1) {
      System.out.println("No");
    }
    else
    {
      // Vector to store the permutation
      int res[] = new int[N];
      for (int index = 0; index < N; index++) {
        res[index] = L + index;
      }
 
      // Case-2: X = 0, Y = 0
      if (X == 0 && Y == 0) {
        System.out.println("Yes");
        for (int index = 0; index < N; index++) {
          System.out.print(res[index] + " ");
        }
        System.out.println();
        return;
      }
 
      // Case-3: X > Y
      // Consider last (X+Y+1) elements
      else if (X > Y) {
        for (int index = N - 2;
             index >= (N - (X + Y + 1));
             index -= 2) {
          int temp = res[index];
          res[index] = res[index + 1];
          res[index + 1] = temp;
        }
      }
 
      // Case-4: X < Y
      // Consider first (X+Y) elements
      else if (Y > X) {
        for (int index = 1; index <= (X + Y);
             index += 2) {
          int temp = res[index];
          res[index] = res[index - 1];
          res[index - 1] = temp;
        }
      }
      else {
        // Case-5: X = Y
        // Consider first (X+Y) elements,
        // it will give (X-1) peaks
        // and Y valleys
        for (int index = 1; index <= (X + Y);
             index += 2) {
          int temp = res[index];
          res[index] = res[index - 1];
          res[index - 1] = temp;
        }
 
        // Swap last 2 elements,
        // to get 1 more peak
        int temp = res[N - 2];
        res[N - 2] = res[N - 1];
        res[N - 1] = temp;
      }
 
      // Print the required array
      System.out.println("Yes");
      for (int index = 0; index < N; index++) {
        System.out.print(res[index] + " ");
      }
      System.out.println();
    }
  }
 
  // Driver code
  public static void main(String[] args)
  {
    // Input
    int L = 1, R = 3, X = 1, Y = 0;
 
    // Function call
    BuildMountainArray(L, R, X, Y);
  }
}
 
// This code is contributed by Potta Lokesh


Python3
# Python code to implement the above approach
import math as Math
 
# Utility function to build the permutation
def BuildMountainArray(L, R, X, Y):
    N = (R - L + 1)
 
    # Case-1: permutation cannot be built
    if (((X + Y) > (N - 2)) or Math.fabs(X - Y) > 1):
        print("No")
    else:
        # Vector to store the permutation
        res = [0] * N
        for index in range(N):
            res[index] = L + index
 
        # Case-2: X = 0, Y = 0
        if (X == 0 and Y == 0):
            print("Yes")
            for index in range(N):
                print(res[index], end=" ")
            print("")
            return
 
        # Case-3: X > Y
        # Consider last (X+Y+1) elements
        elif (X > Y):
            for index in range(N - 2, N - (X + Y + 1) - 1, -2):
                temp = res[index]
                res[index] = res[index + 1]
                res[index + 1] = temp
 
        # Case-4: X < Y
        # Consider first (X+Y) elements
        elif (Y > X):
            for index in range(1, X + Y + 1, 2):
                temp = res[index]
                res[index] = res[index - 1]
                res[index - 1] = temp
        else:
 
            # Case-5: X = Y
            # Consider first (X+Y) elements,
            # it will give (X-1) peaks
            # and Y valleys
            for index in range(1, X + Y + 1, 2):
                temp = res[index]
                res[index] = res[index - 1]
                res[index - 1] = temp
 
            # Swap last 2 elements,
            # to get 1 more peak
            temp = res[N - 2]
            res[N - 2] = res[N - 1]
            res[N - 1] = temp
 
        # Print the required array
        print("Yes")
        for index in range(N):
            print(res[index], end=" ")
        print("")
 
# Driver code
 
# Input
L = 1
R = 3
X = 1
Y = 0
 
# Function call
BuildMountainArray(L, R, X, Y)
 
# This code is contributed by Saurabh jaiswal


C#
// C# implementation of above approach
using System;
using System.Collections;
using System.Collections.Generic;
 
class GFG {
 
  // Utility function to build the permutation
  static void BuildMountainArray(int L, int R, int X,
                                 int Y)
  {
    int N = (R - L + 1);
 
    // Case-1: permutation cannot be built
    if (((X + Y) > (N - 2)) || Math.Abs(X - Y) > 1) {
      Console.WriteLine("No");
    }
    else
    {
      // Vector to store the permutation
      int[] res = new int[N];
      for (int index = 0; index < N; index++) {
        res[index] = L + index;
      }
 
      // Case-2: X = 0, Y = 0
      if (X == 0 && Y == 0) {
        Console.WriteLine("Yes");
        for (int index = 0; index < N; index++) {
          Console.Write(res[index] + " ");
        }
        Console.WriteLine();
        return;
      }
 
      // Case-3: X > Y
      // Consider last (X+Y+1) elements
      else if (X > Y) {
        for (int index = N - 2;
             index >= (N - (X + Y + 1));
             index -= 2) {
          int temp1 = res[index];
          res[index] = res[index + 1];
          res[index + 1] = temp1;
        }
      }
 
      // Case-4: X < Y
      // Consider first (X+Y) elements
      else if (Y > X) {
        for (int index = 1; index <= (X + Y);
             index += 2) {
          int temp2 = res[index];
          res[index] = res[index - 1];
          res[index - 1] = temp2;
        }
      }
      else
      {
         
        // Case-5: X = Y
        // Consider first (X+Y) elements,
        // it will give (X-1) peaks
        // and Y valleys
        for (int index = 1; index <= (X + Y);
             index += 2) {
          int temp3 = res[index];
          res[index] = res[index - 1];
          res[index - 1] = temp3;
        }
 
        // Swap last 2 elements,
        // to get 1 more peak
        int temp4 = res[N - 2];
        res[N - 2] = res[N - 1];
        res[N - 1] = temp4;
      }
 
      // Print the required array
      Console.WriteLine("Yes");
      for (int index = 0; index < N; index++) {
        Console.Write(res[index] + " ");
      }
      Console.WriteLine();
    }
  }
 
  // Driver Code
  public static void Main()
  {
    // Input
    int L = 1, R = 3, X = 1, Y = 0;
 
    // Function call
    BuildMountainArray(L, R, X, Y);
 
  }
}
 
// This code is contributed sanjoy_62.


Javascript


输出
Yes
1 3 2 

时间复杂度: O(N) 其中 N = (R – L + 1)
空间复杂度: O(1)