📌  相关文章
📜  前 N 个正整数的排列计数,使得任意两个连续数之和为素数

📅  最后修改于: 2022-05-13 01:56:07.170000             🧑  作者: Mango

前 N 个正整数的排列计数,使得任意两个连续数之和为素数

求前 N 个正整数的排列数,使得任意两个连续数之和为素数,其中所有循环排列都被认为是相同的。

注意:第一个和最后一个元素的总和也必须是素数。

示例

方法:给定的问题可以通过使用递归和回溯来解决。可以观察到,要找到不同的循环数,而不失一般性,循环应该从1开始。可以使用 Eratosthenes 筛创建一个isPrime[]数组,该数组存储一个数字是否为素数。因此,创建一个递归函数并在排列中添加元素,使其与最后一个元素的和为素数。如果第一个和最后一个元素的总和也是素数,则增加排列计数。

下面是上述方法的实现:

C++
// C++ implementation for the above approach
#include 
using namespace std;
#define ll long long
 
// Initialize a global variable N
const int maxn = 100;
 
// Stores the final count of permutations
ll ans = 0;
 
// Stores whether the integer is prime
bool isPrime[maxn];
bool marked[maxn];
 
void SieveOfEratosthenes(int n)
{
    memset(isPrime, true, sizeof(isPrime));
 
    for (int p = 2; p * p <= n; p++) {
 
        // If prime[p] is not changed,
        // then it is a prime
        if (isPrime[p] == true) {
 
            // Update all multiples of P
            for (int i = p * p; i <= n; i += p)
                isPrime[i] = false;
        }
    }
}
 
// Function to find the number of valid permutations
void countCycles(int m, int n, int prev, int par)
{
    // If a complete permutation is formed
    if (!m) {
        if (isPrime[prev + 1]) {
 
            // If the sum of 1st and last element
            // of the current permutation is prime
            ans++;
        }
        return;
    }
 
    // Iterate from par to N
    for (int i = 1 + par; i <= n; i++) {
 
        if (!marked[i] && isPrime[i + prev]) {
 
            // Visit the current number
            marked[i] = true;
 
            // Recursive Call
            countCycles(m - 1, n, i, 1 - par);
 
            // Backtrack
            marked[i] = false;
        }
    }
}
 
int countPermutations(int N)
{
    // Finding all prime numbers upto 2 * N
    SieveOfEratosthenes(2 * N);
 
    // Initializing all values in marked as 0
    memset(marked, false, sizeof(marked));
 
    // Initial condition
    marked[1] = true;
 
    countCycles(N - 1, N, 1, 1);
 
    // Return Answer
    return ans;
}
 
// Driver code
int main()
{
    int N = 6;
    cout << countPermutations(N);
 
    return 0;
}


Java
// Java implementation for the above approach
import java.util.*;
 
class GFG{
 
// Initialize a global variable N
static int maxn = 100;
 
// Stores the final count of permutations
static int ans = 0;
 
// Stores whether the integer is prime
static boolean []isPrime = new boolean[maxn];
static boolean []marked = new boolean[maxn];
 
static void SieveOfEratosthenes(int n)
{
    for (int i = 0; i 


Python3
# python implementation for the above approach
 
import math
 
# Initialize a global variable N
maxn = 100
 
# Stores the final count of permutations
ans = 0
 
# Stores whether the integer is prime
isPrime = [True for _ in range(maxn)]
marked = [False for _ in range(maxn)]
 
 
def SieveOfEratosthenes(n):
    global ans
    global isPrime
    global marked
 
    for p in range(2, int(math.sqrt(n))+1):
 
                # If prime[p] is not changed,
                # then it is a prime
        if (isPrime[p] == True):
 
                        # Update all multiples of P
            for i in range(p*p, n+1, p):
                isPrime[i] = False
 
 
# Function to find the number of valid permutations
def countCycles(m, n, prev, par):
    global ans
    global isPrime
    global marked
 
    # If a complete permutation is formed
    if (not m):
        if (isPrime[prev + 1]):
 
                        # If the sum of 1st and last element
                        # of the current permutation is prime
            ans += 1
 
        return
 
        # Iterate from par to N
    for i in range(1+par, n+1):
        if (not marked[i] and isPrime[i + prev]):
 
                        # Visit the current number
            marked[i] = True
 
            # Recursive Call
            countCycles(m - 1, n, i, 1 - par)
 
            # Backtrack
            marked[i] = False
 
 
def countPermutations(N):
    global ans
    global isPrime
    global marked
 
    # Finding all prime numbers upto 2 * N
    SieveOfEratosthenes(2 * N)
 
    # Initial condition
    marked[1] = True
 
    countCycles(N - 1, N, 1, 1)
 
    # Return Answer
    return ans
 
 
# Driver code
if __name__ == "__main__":
 
    N = 6
    print(countPermutations(N))
 
    # This code is contributed by rakeshsahni


C#
// C# implementation for the above approach
using System;
 
public class GFG
{
 
  // Initialize a global variable N
  static int maxn = 100;
 
  // Stores the final count of permutations
  static int ans = 0;
 
  // Stores whether the integer is prime
  static bool []isPrime = new bool[maxn];
  static bool []marked = new bool[maxn];
 
  static void SieveOfEratosthenes(int n)
  {
    for (int i = 0; i < isPrime.Length; i += 1) {
      isPrime[i] = true;
    }
 
 
    for (int p = 2; p * p <= n; p++) {
 
      // If prime[p] is not changed,
      // then it is a prime
      if (isPrime[p] == true) {
 
        // Update all multiples of P
        for (int i = p * p; i <= n; i += p)
          isPrime[i] = false;
      }
    }
  }
 
  // Function to find the number of valid permutations
  static void countCycles(int m, int n, int prev, int par)
  {
    // If a complete permutation is formed
    if (m==0) {
      if (isPrime[prev + 1]) {
 
        // If the sum of 1st and last element
        // of the current permutation is prime
        ans++;
      }
      return;
    }
 
    // Iterate from par to N
    for (int i = 1 + par; i <= n; i++) {
 
      if (!marked[i] && isPrime[i + prev]) {
 
        // Visit the current number
        marked[i] = true;
 
        // Recursive Call
        countCycles(m - 1, n, i, 1 - par);
 
        // Backtrack
        marked[i] = false;
      }
    }
  }
 
  static int countPermutations(int N)
  {
 
    // Finding all prime numbers upto 2 * N
    SieveOfEratosthenes(2 * N);
 
    // Initializing all values in marked as 0
    for (int i = 0; i 


Javascript


输出
2

时间复杂度: O(N!)
辅助空间: O(1)