📌  相关文章
📜  使用 Segment Tree 在给定索引范围内查询值在 A 到 B 范围内的元素

📅  最后修改于: 2021-09-03 04:07:11             🧑  作者: Mango

给定一个包含N 个元素的数组arr[]和两个整数AB ,任务是回答 Q 查询,每个查询都有两个整数LR 。对于每个查询,任务是找到子数组 arr[L…R]中位于AB范围内(均包括在内)的元素数。

例子:

先决条件:段树
朴素的方法:通过简单地从索引L遍历数组到R 来找到每个查询的答案,并在数组元素位于AB范围内时继续将计数加1 。这种方法的时间复杂度为O(n * q)

有效的方法:
构建一个段树。
段树的表示
1.叶节点是输入数组的元素。
2.每个内部节点包含位于其下所有叶子的AB范围内的叶子数。

从给定数组构建段树
我们从一个段 arr[0 开始。 . . n-1]。并且每次我们将当前段分成两半(如果它还没有成为长度为1的段),然后在两半上调用相同的过程,对于每个这样的段,我们存储位于其中的元素数它下所有节点的范围AB。
这种方法的时间复杂度为O(q * log(n))

下面是上述方法的实现:

C++
// C++ implementation of the approach
#include 
using namespace std;
 
// Procedure to build the segment tree
void buildTree(vector& tree, int* arr,
               int index, int s, int e, int A, int B)
{
 
    // Reached the leaf node
    // of the segment tree
    if (s == e) {
        if (arr[s] >= A && arr[s] <= B)
            tree[index] = 1;
        else
            tree[index] = 0;
        return;
    }
 
    // Recursively call the buildTree
    // on both the nodes of the tree
    int mid = (s + e) / 2;
    buildTree(tree, arr, 2 * index, s, mid, A, B);
    buildTree(tree, arr, 2 * index + 1, mid + 1, e, A, B);
 
    tree[index] = tree[2 * index] + tree[2 * index + 1];
}
 
// Query procedure to get the answer
// for each query l and r are query range
int query(vector tree, int index, int s,
          int e, int l, int r)
{
 
    // out of bound or no overlap
    if (r < s || l > e)
        return 0;
 
    // Complete overlap
    // Query range completely lies in
    // the segment tree node range
    if (s >= l && e <= r) {
        return tree[index];
    }
 
    // Partially overlap
    // Query range partially lies in
    // the segment tree node range
    int mid = (s + e) / 2;
    return (query(tree, 2 * index, s, mid, l, r)
            + query(tree, 2 * index + 1, mid + 1, e, l, r));
}
 
// Driver code
int main()
{
    int arr[] = { 7, 3, 9, 13, 5, 4 };
    int n = sizeof(arr) / sizeof(arr[0]);
    vector tree(4 * n + 1);
 
    int L = 1, R = 5, A = 4, B = 7;
 
    buildTree(tree, arr, 1, 0, n - 1, A, B);
 
    cout << query(tree, 1, 0, n - 1, L, R)
         << endl;
    return 0;
}


Java
// Java implementation of the approach
class GFG{
     
// Procedure to build the segment tree
static void buildTree(int tree[] , int arr[] ,
                      int index, int s, int e,
                      int A, int B)
{
     
    // Reached the leaf node
    // of the segment tree
    if (s == e)
    {
        if (arr[s] >= A && arr[s] <= B)
            tree[index] = 1;
        else
            tree[index] = 0;
             
        return;
    }
 
    // Recursively call the buildTree
    // on both the nodes of the tree
    int mid = (s + e) / 2;
    buildTree(tree, arr, 2 * index,
              s, mid, A, B);
    buildTree(tree, arr, 2 * index + 1,
              mid + 1, e, A, B);
 
    tree[index] = tree[2 * index] +
                  tree[2 * index + 1];
}
 
// Query procedure to get the answer
// for each query l and r are query range
static int query(int tree[], int index, int s,
                 int e, int l, int r)
{
     
    // Out of bound or no overlap
    if (r < s || l > e)
        return 0;
 
    // Complete overlap
    // Query range completely lies in
    // the segment tree node range
    if (s >= l && e <= r)
    {
        return tree[index];
    }
 
    // Partially overlap
    // Query range partially lies in
    // the segment tree node range
    int mid = (s + e) / 2;
    return (query(tree, 2 * index,
                  s, mid, l, r) +
            query(tree, 2 * index + 1,
                  mid + 1, e, l, r));
}
 
// Driver code
public static void main (String []args)
{
    int arr[] = { 7, 3, 9, 13, 5, 4 };
    int n = arr.length;
    int tree[] = new int [(4 * n + 1)];
 
    int L = 1, R = 5, A = 4, B = 7;
 
    buildTree(tree, arr, 1, 0, n - 1, A, B);
 
    System.out.print(query(tree, 1, 0, n - 1, L, R));
}
}
 
// This code is contributed by chitranayal


Python3
# Python3 implementation of the approach
 
# Procedure to build the segment tree
def buildTree(tree,arr,index, s, e, A, B):
 
    # Reached the leaf node
    # of the segment tree
    if (s == e):
        if (arr[s] >= A and arr[s] <= B):
            tree[index] = 1
        else:
            tree[index] = 0
        return
 
    # Recursively call the buildTree
    # on both the nodes of the tree
    mid = (s + e) // 2
    buildTree(tree, arr, 2 * index, s, mid, A, B)
    buildTree(tree, arr, 2 * index + 1, mid + 1, e, A, B)
 
    tree[index] = tree[2 * index] + tree[2 * index + 1]
 
# Query procedure to get the answer
# for each query l and r are query range
def query(tree, index, s, e, l, r):
 
    # out of bound or no overlap
    if (r < s or l > e):
        return 0
 
    # Complete overlap
    # Query range completely lies in
    # the segment tree node range
    if (s >= l and e <= r):
        return tree[index]
 
    # Partially overlap
    # Query range partially lies in
    # the segment tree node range
    mid = (s + e) // 2
    return (query(tree, 2 * index, s, mid, l, r)
            + query(tree, 2 * index + 1, mid + 1, e, l, r))
 
# Driver code
if __name__ == '__main__':
    arr=[7, 3, 9, 13, 5, 4]
    n = len(arr)
    tree=[0]*(4 * n + 1)
 
    L = 1
    R = 5
    A = 4
    B = 7
 
    buildTree(tree, arr, 1, 0, n - 1, A, B)
 
    print(query(tree, 1, 0, n - 1, L, R))
 
# This code is contributed by mohit kumar 29


C#
// C# implementation of the approach
using System;
 
class GFG{
     
// Procedure to build the segment tree
static void buildTree(int[] tree, int[] arr,
                      int index, int s, int e,
                      int A, int B)
{
     
    // Reached the leaf node
    // of the segment tree
    if (s == e)
    {
        if (arr[s] >= A && arr[s] <= B)
            tree[index] = 1;
        else
            tree[index] = 0;
             
        return;
    }
 
    // Recursively call the buildTree
    // on both the nodes of the tree
    int mid = (s + e) / 2;
    buildTree(tree, arr, 2 * index,
              s, mid, A, B);
    buildTree(tree, arr, 2 * index + 1,
              mid + 1, e, A, B);
 
    tree[index] = tree[2 * index] +
                  tree[2 * index + 1];
}
 
// Query procedure to get the answer
// for each query l and r are query range
static int query(int[] tree, int index, int s,
                 int e, int l, int r)
{
     
    // Out of bound or no overlap
    if (r < s || l > e)
        return 0;
 
    // Complete overlap
    // Query range completely lies in
    // the segment tree node range
    if (s >= l && e <= r)
    {
        return tree[index];
    }
 
    // Partially overlap
    // Query range partially lies in
    // the segment tree node range
    int mid = (s + e) / 2;
    return (query(tree, 2 * index,
                  s, mid, l, r) +
            query(tree, 2 * index + 1,
                  mid + 1, e, l, r));
}
 
// Driver code
public static void Main ()
{
    int[] arr = new int[] { 7, 3, 9, 13, 5, 4 };
    int n = arr.Length;
    int[] tree = new int [(4 * n + 1)];
 
    int L = 1, R = 5, A = 4, B = 7;
 
    buildTree(tree, arr, 1, 0, n - 1, A, B);
 
    Console.Write(query(tree, 1, 0, n - 1, L, R));
}
}
 
// This code is contributed by sanjoy_62


Javascript


输出:
2

如果您想与行业专家一起参加直播课程,请参阅Geeks Classes Live