📌  相关文章
📜  从所有给定的行集中找到Q查询中给定x值的y的最小值

📅  最后修改于: 2021-04-21 23:23:57             🧑  作者: Mango

给定一个二维数组arr [] [] ,该函数y = mx + cQ个查询形式的大量行组成,由lope(m)intercept(c)组成,并且每个查询包含一个值x 。任务是从所有给定的线集中为给定的x值找到y的最小值。

例子:

天真的方法:天真的方法是替换每行中x的值并计算所有行中的最小值。对于每个查询,将花费O(N)时间,因此解决方案的复杂度变为O(Q * N) ,其中N是行数,Q是查询数。

高效的方法:想法是使用凸包技巧:

  • 从给定的线组中,可以找到并删除没有意义的线(对于x的任何值,它们永远不会给出最小值y),从而减少了线组。
  • 现在,如果可以在每行给出最小值的地方找到范围(l,r),则可以使用二进制搜索来回答每个查询。
  • 因此,创建了具有倾斜度降序的线的分类矢量,并且以倾斜度降序将线插入。

下面是上述方法的实现:

C++
// C++ implementation of the above approach
 
#include 
using namespace std;
 
struct Line {
    int m, c;
 
public:
    // Sort the line in decreasing
    // order of their slopes
    bool operator<(Line l)
    {
 
        // If slopes arent equal
        if (m != l.m)
            return m > l.m;
 
        // If the slopes are equal
        else
            return c > l.c;
    }
 
    // Checks if line L3 or L1 is better than L2
    // Intersection of Line 1 and
    // Line 2 has x-coordinate (b1-b2)/(m2-m1)
    // Similarly for Line 1 and
    // Line 3 has x-coordinate (b1-b3)/(m3-m1)
    // Cross multiplication will give the below result
    bool check(Line L1, Line L2, Line L3)
    {
        return (L3.c - L1.c) * (L1.m - L2.m)
               < (L2.c - L1.c) * (L1.m - L3.m);
    }
};
 
struct Convex_HULL_Trick {
 
    // To store the lines
    vector l;
 
    // Add the line to the set of lines
    void add(Line newLine)
    {
 
        int n = l.size();
 
        // To check if after adding the new line
        // whether old lines are
        // losing significance or not
        while (n >= 2
               && newLine.check(l[n - 2],
                                l[n - 1],
                                newLine)) {
            n--;
        }
 
        l.resize(n);
 
        // Add the present line
        l.push_back(newLine);
    }
 
    // Function to return the y coordinate
    // of the specified line for the given coordinate
    int value(int in, int x)
    {
        return l[in].m * x + l[in].c;
    }
 
    // Function to Return the minimum value
    // of y for the given x coordinate
    int minQuery(int x)
    {
        // if there is no lines
        if (l.empty())
            return INT_MAX;
 
        int low = 0, high = (int)l.size() - 2;
 
        // Binary search
        while (low <= high) {
            int mid = (low + high) / 2;
 
            if (value(mid, x) > value(mid + 1, x))
                low = mid + 1;
            else
                high = mid - 1;
        }
 
        return value(low, x);
    }
};
 
// Driver code
int main()
{
    Line lines[] = { { 1, 1 },
                     { 0, 0 },
                     { -3, 3 } };
    int Q[] = { -2, 2, 0 };
    int n = 3, q = 3;
    Convex_HULL_Trick cht;
 
    // Sort the lines
    sort(lines, lines + n);
 
    // Add the lines
    for (int i = 0; i < n; i++)
        cht.add(lines[i]);
 
    // For each query in Q
    for (int i = 0; i < q; i++) {
        int x = Q[i];
        cout << cht.minQuery(x) << endl;
    }
 
    return 0;
}


Java
// Java implementation of the above approach
import java.util.ArrayList;
import java.util.Arrays;
 
class GFG{
 
static class Line implements Comparable
{
    int m, c;
 
    public Line(int m, int c)
    {
        this.m = m;
        this.c = c;
    }
 
    // Sort the line in decreasing
    // order of their slopes
    @Override
    public int compareTo(Line l)
    {
         
        // If slopes arent equal
        if (m != l.m)
            return l.m - this.m;
 
        // If the slopes are equal
        else
            return l.c - this.c;
    }
 
    // Checks if line L3 or L1 is better than L2
    // Intersection of Line 1 and
    // Line 2 has x-coordinate (b1-b2)/(m2-m1)
    // Similarly for Line 1 and
    // Line 3 has x-coordinate (b1-b3)/(m3-m1)
    // Cross multiplication will give the below result
    boolean check(Line L1, Line L2, Line L3)
    {
        return (L3.c - L1.c) * (L1.m - L2.m) <
               (L2.c - L1.c) * (L1.m - L3.m);
    }
}
 
static class Convex_HULL_Trick
{
     
    // To store the lines
    ArrayList l = new ArrayList<>();
 
    // Add the line to the set of lines
    void add(Line newLine)
    {
        int n = l.size();
 
        // To check if after adding the new
        // line whether old lines are
        // losing significance or not
        while (n >= 2 &&
               newLine.check(l.get(n - 2),
                             l.get(n - 1), newLine))
        {
            n--;
        }
 
        // l = new Line[n];
 
        // Add the present line
        l.add(newLine);
    }
 
    // Function to return the y coordinate
    // of the specified line for the given
    // coordinate
    int value(int in, int x)
    {
        return l.get(in).m * x + l.get(in).c;
    }
 
    // Function to Return the minimum value
    // of y for the given x coordinate
    int minQuery(int x)
    {
         
        // If there is no lines
        if (l.isEmpty())
            return Integer.MAX_VALUE;
 
        int low = 0, high = (int)l.size() - 2;
 
        // Binary search
        while (low <= high)
        {
            int mid = (low + high) / 2;
 
            if (value(mid, x) > value(mid + 1, x))
                low = mid + 1;
            else
                high = mid - 1;
        }
        return value(low, x);
    }
};
 
// Driver code
public static void main(String[] args)
{
    Line[] lines = { new Line(1, 1),
                     new Line(0, 0),
                     new Line(-3, 3) };
    int Q[] = { -2, 2, 0 };
    int n = 3, q = 3;
     
    Convex_HULL_Trick cht = new Convex_HULL_Trick();
 
    // Sort the lines
    Arrays.sort(lines);
 
    // Add the lines
    for(int i = 0; i < n; i++)
        cht.add(lines[i]);
 
    // For each query in Q
    for(int i = 0; i < q; i++)
    {
        int x = Q[i];
        System.out.println(cht.minQuery(x));
    }
}
}
 
// This code is contributed by sanjeev2552


输出:
-1
-3
0