📜  Python中的网格搜索优化算法

📅  最后修改于: 2020-08-25 05:09:52             🧑  作者: Mango

介绍

在本教程中,我们将讨论一种非常强大的优化(或自动化)算法,即网格搜索算法。它最常用于机器学习模型中的超参数调整。我们将学习如何使用Python来实现它,以及如何将其应用到实际应用程序中,以了解它如何帮助我们为模型选择最佳参数并提高其准确性。因此,让我们开始吧。

先决条件

要遵循本教程,您应该对Python或其他某种编程语言有基本的了解。您最好也具有机器学习的基本知识,但这不是必需的。除此之外,本文是初学者友好的,任何人都可以关注。

安装

要完成本教程,您需要在系统中安装以下库/框架:

  1. Python 3
  2. NumPy
  3. Pandas
  4. Keras
  5. Scikit-Learn

它们都非常容易安装-您可以单击每个按钮进入各自的网站,其中提供了详细的安装说明。通常,可以使用pip安装软件包: 

$ pip install numpy pandas tensorflow keras scikit-learn

如果遇到任何问题,请参阅每个软件包中的官方文档。

什么是网格搜索?

网格搜索本质上是一种优化算法,可让您从提供的参数选项列表中选择最适合优化问题的参数,从而自动执行“试错法”。尽管它可以应用于许多优化问题,但是由于它在机器学习中的使用而获得最广为人知的参数,该参数可以使模型获得最佳精度。

假设您的模型采用以下三个参数作为输入:

  1. 隐藏层数[2,4]
  2. 每层中的神经元数量[5,10]
  3. 纪元数[10,50]

如果对于每个参数输入,我们希望尝试两个选项(如上面的方括号中所述),则总计总共2 3 = 8个不同的组合(例如,一个可能的组合为[2,5,10])。手动执行此操作会很麻烦。

现在,假设我们有10个不同的输入参数,并且想为每个参数尝试5个可能的值。每当我们希望更改参数值,重新运行代码并跟踪所有参数组合的结果时,都需要从我们这边进行手动输入。网格搜索可自动执行该过程,因为它仅获取每个参数的可能值并运行代码以尝试所有可能的组合,输出每个组合的结果,并输出可提供最佳准确性的组合。有用,不是吗?

网格搜索实施

好吧,足够多的谈话。让我们将网格搜索应用于实际应用程序。讨论机器学习和数据预处理这一部分不在本教程的讨论范围之内,因此我们只需要运行其代码并深入讨论Grid Search的引入部分即可。让我们开始吧!

我们将使用Pima印度糖尿病数据集,该数据集包含有关患者是否基于不同属性(例如血糖,葡萄糖浓度,血压等)的糖尿病信息。使用Pandas read_csv()方法,您可以直接从在线资源中导入数据集。

以下脚本导入所需的库:

from sklearn.model_selection import GridSearchCV, KFold
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.wrappers.scikit_learn import KerasClassifier
from keras.optimizers import Adam
import sys
import pandas as pd
import numpy as np

以下脚本导入数据集并设置数据集的列标题。

columns = ['num_pregnant', 'glucose_concentration', 'blood_pressure', 'skin_thickness',
           'serum_insulin', 'BMI', 'pedigree_function', 'age', 'class']

data_path = "https://raw.githubusercontent.com/mkhalid1/Machine-Learning-Projects-Python-/master/Grid%20Search/pima-indians-diabetes.csv"

df = pd.read_csv(data_path, names=columns)

让我们看一下数据集的前5行:

df.head()

输出:

如您所见,这5行都是用来描述每一列的标签(实际上有9行),因此它们对我们没有用。我们将从删除这些非数据行开始,然后将所有NaN值替换为0:

# Remove first 9 non-data rows
df = df.iloc[9:]

# Replace NaN (Not a Number) values with 0 in each column
for col in columns:
    df[col].replace(0, np.NaN, inplace=True)

df.dropna(inplace=True) # Drop all rows with missing values
dataset = df.values # Convert dataframe to numpy array

以下脚本将数据分为要素和标签集,并将标准缩放应用于数据集:

X = dataset[:,0:8]
Y = dataset[:, 8].astype(int)

# Normalize the data using sklearn StandardScaler
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler().fit(X)

# Transform and display the training data
X_standardized = scaler.transform(X)

data = pd.DataFrame(X_standardized)

以下方法创建了我们简单的深度学习模型:

def create_model(learn_rate, dropout_rate):
    # Create model
    model = Sequential()
    model.add(Dense(8, input_dim=8, kernel_initializer='normal', activation='relu'))
    model.add(Dropout(dropout_rate))
    model.add(Dense(4, input_dim=8, kernel_initializer='normal', activation='relu'))
    model.add(Dropout(dropout_rate))
    model.add(Dense(1, activation='sigmoid'))

    # Compile the model
    adam = Adam(lr=learn_rate)
    model.compile(loss='binary_crossentropy', optimizer=adam, metrics=['accuracy'])
    return model

这是加载数据集,对其进行预处理并创建您的机器学习模型所需的所有代码。既然,我们只对看到Grid Search的功能感兴趣,所以我没有进行训练/测试拆分,而是将模型拟合到整个数据集上。

在下一节中,我们将开始了解Grid Search如何通过优化参数使生活变得更轻松。

在没有网格搜索的情况下训练模型

在下面的代码中,我们将使用随机或基于直觉决定的参数值创建模型,并查看模型的性能:

# Declare parameter values
dropout_rate = 0.1
epochs = 1
batch_size = 20
learn_rate = 0.001

# Create the model object by calling the create_model function we created above
model = create_model(learn_rate, dropout_rate)

# Fit the model onto the training data
model.fit(X_standardized, Y, batch_size=batch_size, epochs=epochs, verbose=1)

输出:

Epoch 1/1
130/130 [==============================] - 0s 2ms/step - loss: 0.6934 - accuracy: 0.6000

如下所示,我们得到的精度是60.00%。这是相当低的,但是没有什么可担心的!我们仍然可以使用Grid Search尝试保存一天。所以,让我们开始吧。

使用网格搜索优化超参数

如果您不使用Grid Search,则可以直接fit()在上面创建的模型上调用方法。但是,要使用网格搜索,我们需要将一些参数传递给create_model()函数。此外,我们需要使用不同的选项声明我们的网格,我们希望为每个参数尝试这些选项。让我们分部分进行。

首先,我们修改create_model()函数以接受调用函数的参数:

def create_model(learn_rate, dropout_rate):
    # Create model
    model = Sequential()
    model.add(Dense(8, input_dim=8, kernel_initializer='normal', activation='relu'))
    model.add(Dropout(dropout_rate))
    model.add(Dense(4, input_dim=8, kernel_initializer='normal', activation='relu'))
    model.add(Dropout(dropout_rate))
    model.add(Dense(1, activation='sigmoid'))

    # Compile the model
    adam = Adam(lr=learn_rate)
    model.compile(loss='binary_crossentropy', optimizer=adam, metrics=['accuracy'])
    return model

# Create the model
model = KerasClassifier(build_fn=create_model, verbose=1)

现在,我们准备实现网格搜索算法并在其上拟合数据集:

# Define the parameters that you wish to use in your Grid Search along
# with the list of values that you wish to try out
learn_rate = [0.001, 0.02, 0.2]
dropout_rate = [0.0, 0.2, 0.4]
batch_size = [10, 20, 30]
epochs = [1, 5, 10]

seed = 42

# Make a dictionary of the grid search parameters
param_grid = dict(learn_rate=learn_rate, dropout_rate=dropout_rate, batch_size=batch_size, epochs=epochs )

# Build and fit the GridSearchCV
grid = GridSearchCV(estimator=model, param_grid=param_grid,
                    cv=KFold(random_state=seed), verbose=10)

grid_results = grid.fit(X_standardized, Y)

# Summarize the results in a readable format
print("Best: {0}, using {1}".format(grid_results.best_score_, grid_results.best_params_))

means = grid_results.cv_results_['mean_test_score']
stds = grid_results.cv_results_['std_test_score']
params = grid_results.cv_results_['params']

for mean, stdev, param in zip(means, stds, params):
    print('{0} ({1}) with: {2}'.format(mean, stdev, param))

输出:

Best: 0.7959183612648322, using {'batch_size': 10, 'dropout_rate': 0.2, 'epochs': 10, 'learn_rate': 0.02}

在输出中,我们可以看到它为我们提供了最佳精度的参数组合。

可以肯定地说,网格搜索在Python中非常容易实现,并且在人工方面节省了很多时间。您只需列出所有您想调整的参数,声明要测试的值,运行您的代码,然后就不用理会了。您无需再输入任何信息。找到最佳参数组合后,您可以简单地将其用于最终模型。

结论

总结起来,我们了解了什么是Grid Search,它如何帮助我们优化模型以及它带来的诸如自动化的好处。此外,我们学习了如何使用Python语言在几行代码中实现它。为了了解其有效性,我们还训练了带有和不带有Grid Search的机器学习模型,使用Grid Search的准确性提高了19%。