📜  n-ary 树中给定节点的子节点数

📅  最后修改于: 2022-05-13 01:57:16.085000             🧑  作者: Mango

n-ary 树中给定节点的子节点数

给定一个节点 x,在给定的 n 叉树中找到 x(如果存在)的子节点数。

例子 :

Input : x = 50
Output : 3
Explanation : 50 has 3 children having values 40, 100 and 20.

方法 :

  • 将孩子的数量初始化为 0。
  • 对于 n 叉树中的每个节点,检查其值是否等于 x。如果是,则返回孩子的数量。
  • 如果 x 的值不等于当前节点,则将当前节点的所有子节点推入队列。
  • 不断重复上述步骤,直到队列变空。

下面是上述想法的实现:

C++
// C++ program to find number
// of children of given node
#include 
using namespace std;
 
// Represents a node of an n-ary tree
class Node {
 
public:
    int key;
    vector child;
 
    Node(int data)
    {
        key = data;
    }
};
 
// Function to calculate number
// of children of given node
int numberOfChildren(Node* root, int x)
{
    // initialize the numChildren as 0
    int numChildren = 0;
 
    if (root == NULL)
        return 0;
 
    // Creating a queue and pushing the root
    queue q;
    q.push(root);
 
    while (!q.empty()) {
        int n = q.size();
 
        // If this node has children
        while (n > 0) {
 
            // Dequeue an item from queue and
            // check if it is equal to x
            // If YES, then return number of children
            Node* p = q.front();
            q.pop();
            if (p->key == x) {
                numChildren = numChildren + p->child.size();
                return numChildren;
            }
 
            // Enqueue all children of the dequeued item
            for (int i = 0; i < p->child.size(); i++)
                q.push(p->child[i]);
            n--;
        }
    }
    return numChildren;
}
 
// Driver program
int main()
{
    // Creating a generic tree
    Node* root = new Node(20);
    (root->child).push_back(new Node(2));
    (root->child).push_back(new Node(34));
    (root->child).push_back(new Node(50));
    (root->child).push_back(new Node(60));
    (root->child).push_back(new Node(70));
    (root->child[0]->child).push_back(new Node(15));
    (root->child[0]->child).push_back(new Node(20));
    (root->child[1]->child).push_back(new Node(30));
    (root->child[2]->child).push_back(new Node(40));
    (root->child[2]->child).push_back(new Node(100));
    (root->child[2]->child).push_back(new Node(20));
    (root->child[0]->child[1]->child).push_back(new Node(25));
    (root->child[0]->child[1]->child).push_back(new Node(50));
 
    // Node whose number of
    // children is to be calculated
    int x = 50;
 
    // Function calling
    cout << numberOfChildren(root, x) << endl;
 
    return 0;
}


Java
// Java program to find number
// of children of given node
import java.util.*;
 
class GFG
{
 
// Represents a node of an n-ary tree
static class Node
{
    int key;
    Vector child = new Vector<>();
 
    Node(int data)
    {
        key = data;
    }
};
 
// Function to calculate number
// of children of given node
static int numberOfChildren(Node root, int x)
{
    // initialize the numChildren as 0
    int numChildren = 0;
 
    if (root == null)
        return 0;
 
    // Creating a queue and pushing the root
    Queue q = new LinkedList();
    q.add(root);
 
    while (!q.isEmpty())
    {
        int n = q.size();
 
        // If this node has children
        while (n > 0)
        {
 
            // Dequeue an item from queue and
            // check if it is equal to x
            // If YES, then return number of children
            Node p = q.peek();
            q.remove();
            if (p.key == x)
            {
                numChildren = numChildren +
                              p.child.size();
                return numChildren;
            }
 
            // Enqueue all children of the dequeued item
            for (int i = 0; i < p.child.size(); i++)
                q.add(p.child.get(i));
            n--;
        }
    }
    return numChildren;
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Creating a generic tree
    Node root = new Node(20);
    (root.child).add(new Node(2));
    (root.child).add(new Node(34));
    (root.child).add(new Node(50));
    (root.child).add(new Node(60));
    (root.child).add(new Node(70));
    (root.child.get(0).child).add(new Node(15));
    (root.child.get(0).child).add(new Node(20));
    (root.child.get(1).child).add(new Node(30));
    (root.child.get(2).child).add(new Node(40));
    (root.child.get(2).child).add(new Node(100));
    (root.child.get(2).child).add(new Node(20));
    (root.child.get(0).child.get(1).child).add(new Node(25));
    (root.child.get(0).child.get(1).child).add(new Node(50));
 
    // Node whose number of
    // children is to be calculated
    int x = 50;
 
    // Function calling
    System.out.println(numberOfChildren(root, x));
}
}
 
// This code is contributed by 29AjayKumar


Python3
# Python3 program to find number
# of children of given node
 
# Node of a linked list
class Node:
    def __init__(self, data = None):
        self.key = data
        self.child = []
 
# Function to calculate number
# of children of given node
def numberOfChildren( root, x):
 
    # initialize the numChildren as 0
    numChildren = 0
 
    if (root == None):
        return 0
 
    # Creating a queue and appending the root
    q = []
    q.append(root)
 
    while (len(q) > 0) :
        n = len(q)
 
        # If this node has children
        while (n > 0):
 
            # Dequeue an item from queue and
            # check if it is equal to x
            # If YES, then return number of children
            p = q[0]
            q.pop(0)
            if (p.key == x) :
                numChildren = numChildren + len(p.child)
                return numChildren
             
            i = 0
             
            # Enqueue all children of the dequeued item
            while ( i < len(p.child)):
                q.append(p.child[i])
                i = i + 1
            n = n - 1
 
    return numChildren
 
# Driver program
 
# Creating a generic tree
root = Node(20)
(root.child).append(Node(2))
(root.child).append(Node(34))
(root.child).append(Node(50))
(root.child).append(Node(60))
(root.child).append(Node(70))
(root.child[0].child).append(Node(15))
(root.child[0].child).append(Node(20))
(root.child[1].child).append(Node(30))
(root.child[2].child).append(Node(40))
(root.child[2].child).append(Node(100))
(root.child[2].child).append(Node(20))
(root.child[0].child[1].child).append(Node(25))
(root.child[0].child[1].child).append(Node(50))
 
# Node whose number of
# children is to be calculated
x = 50
 
# Function calling
print( numberOfChildren(root, x) )
 
# This code is contributed by Arnab Kundu


C#
// C# program to find number
// of children of given node
using System;
using System.Collections.Generic;
     
class GFG
{
 
// Represents a node of an n-ary tree
public class Node
{
    public int key;
    public List child = new List();
 
    public Node(int data)
    {
        key = data;
    }
};
 
// Function to calculate number
// of children of given node
static int numberOfChildren(Node root, int x)
{
    // initialize the numChildren as 0
    int numChildren = 0;
 
    if (root == null)
        return 0;
 
    // Creating a queue and pushing the root
    Queue q = new Queue();
    q.Enqueue(root);
 
    while (q.Count != 0)
    {
        int n = q.Count;
 
        // If this node has children
        while (n > 0)
        {
 
            // Dequeue an item from queue and
            // check if it is equal to x
            // If YES, then return number of children
            Node p = q.Peek();
            q.Dequeue();
            if (p.key == x)
            {
                numChildren = numChildren +
                              p.child.Count;
                return numChildren;
            }
 
            // Enqueue all children of the dequeued item
            for (int i = 0; i < p.child.Count; i++)
                q.Enqueue(p.child[i]);
            n--;
        }
    }
    return numChildren;
}
 
// Driver Code
public static void Main(String[] args)
{
     
    // Creating a generic tree
    Node root = new Node(20);
    (root.child).Add(new Node(2));
    (root.child).Add(new Node(34));
    (root.child).Add(new Node(50));
    (root.child).Add(new Node(60));
    (root.child).Add(new Node(70));
    (root.child[0].child).Add(new Node(15));
    (root.child[0].child).Add(new Node(20));
    (root.child[1].child).Add(new Node(30));
    (root.child[2].child).Add(new Node(40));
    (root.child[2].child).Add(new Node(100));
    (root.child[2].child).Add(new Node(20));
    (root.child[0].child[1].child).Add(new Node(25));
    (root.child[0].child[1].child).Add(new Node(50));
 
    // Node whose number of
    // children is to be calculated
    int x = 50;
 
    // Function calling
    Console.WriteLine(numberOfChildren(root, x));
}
}
 
// This code is contributed by 29AjayKumar


Javascript


输出:
3

时间复杂度: O(N),其中 N 是树中的节点数。
辅助空间: O(N),其中 N 是树中的节点数。

?list=PLqM7alHXFySHCXD7r1J0ky9Zg_GBB1dbk