📜  给定图中没有任何内部循环的所有循环的计数

📅  最后修改于: 2021-10-25 03:11:38             🧑  作者: Mango

给定一个由编号为[0, N-1]N个顶点和E 条边组成的无向图,任务是计算循环的数量,使得循环的任何顶点子集都不会形成另一个循环。
例子:

方法:
由于 V 个顶点需要 V 个边形成 1 个循环,因此可以使用以下公式表示所需循环的数量:

(Edges - Vertices) + 1

插图:

该公式还涵盖了单个顶点可能具有自循环的情况。
下面是上述方法的实现:

C++
// C++ implementation for the
// above approach.
 
#include 
using namespace std;
 
// Function to return the
// count of required cycles
int numberOfCycles(int N, int E,
                   int edges[][2])
{
    vector graph[N];
    for (int i = 0; i < E; i++) {
        graph[edges[i][0]]
            .push_back(edges[i][1]);
        graph[edges[i][1]]
            .push_back(edges[i][0]);
    }
 
    // Return the number of cycles
    return (E - N) + 1;
}
 
// Driver Code
int main()
{
    int N = 6;
    int E = 9;
    int edges[][2] = { { 0, 1 },
                       { 1, 2 },
                       { 2, 0 },
                       { 5, 1 },
                       { 5, 0 },
                       { 3, 0 },
                       { 3, 2 },
                       { 4, 2 },
                       { 4, 1 } };
    int k = numberOfCycles(N, E,
                           edges);
 
    cout << k << endl;
    return 0;
}


Java
// Java implementation for the
// above approach.
import java.util.*;
 
class GFG{
 
// Function to return the
// count of required cycles
static int numberOfCycles(int N, int E,
                          int edges[][])
{
    @SuppressWarnings("unchecked")
    Vector []graph = new Vector[N];
    for(int i = 0; i < N; i++)
        graph[i] = new Vector();
         
    for(int i = 0; i < E; i++)
    {
        graph[edges[i][0]].add(edges[i][1]);
        graph[edges[i][1]].add(edges[i][0]);
    }
 
    // Return the number of cycles
    return (E - N) + 1;
}
 
// Driver Code
public static void main(String[] args)
{
    int N = 6;
    int E = 9;
    int edges[][] = { { 0, 1 },
                      { 1, 2 },
                      { 2, 0 },
                      { 5, 1 },
                      { 5, 0 },
                      { 3, 0 },
                      { 3, 2 },
                      { 4, 2 },
                      { 4, 1 } };
                       
    int k = numberOfCycles(N, E, edges);
 
    System.out.print(k + "\n");
}
}
 
// This code is contributed by Amit Katiyar


Python3
# Python3 implementation for the
# above approach.
  
# Function to return the
# count of required cycles
def numberOfCycles(N, E, edges):
 
    graph=[[] for i in range(N)]
     
    for i in range(E):
     
        graph[edges[i][0]].append(edges[i][1]);
        graph[edges[i][1]].append(edges[i][0]);
  
    # Return the number of cycles
    return (E - N) + 1;
  
# Driver Code
if __name__=='__main__':
     
    N = 6;
    E = 9;
    edges = [ [ 0, 1 ],
                       [ 1, 2 ],
                       [ 2, 0 ],
                       [ 5, 1 ],
                       [ 5, 0 ],
                       [ 3, 0 ],
                       [ 3, 2 ],
                       [ 4, 2 ],
                       [ 4, 1 ] ];
     
    k = numberOfCycles(N, E,edges);
    print(k)
     
    # This code is contributed by rutvik_56


C#
// C# implementation for the
// above approach.
using System;
using System.Collections.Generic;
class GFG{
 
// Function to return the
// count of required cycles
static int numberOfCycles(int N, int E,
                          int [,]edges)
{
 
    List []graph = new List[N];
    for(int i = 0; i < N; i++)
        graph[i] = new List();
         
    for(int i = 0; i < E; i++)
    {
        graph[edges[i, 0]].Add(edges[i, 1]);
        graph[edges[i, 1]].Add(edges[i, 0]);
    }
 
    // Return the number of cycles
    return (E - N) + 1;
}
 
// Driver Code
public static void Main(String[] args)
{
    int N = 6;
    int E = 9;
    int [,]edges = { { 0, 1 }, { 1, 2 },
                     { 2, 0 }, { 5, 1 },
                     { 5, 0 }, { 3, 0 },
                     { 3, 2 }, { 4, 2 },
                     { 4, 1 } };
                       
    int k = numberOfCycles(N, E, edges);
 
    Console.Write(k + "\n");
}
}
 
// This code is contributed by Rohit_ranjan


Javascript


输出:
4

时间复杂度: O(E)
辅助空间: O(N)

如果您希望与专家一起参加现场课程,请参阅DSA 现场工作专业课程学生竞争性编程现场课程