📜  将无向图转换为有向欧拉电路

📅  最后修改于: 2021-04-29 11:19:20             🧑  作者: Mango

给定具有V个节点(例如,从1到V的编号)和E边的无向图,任务是检查该图是否为欧拉图,如果是,则将其转换为有向欧拉电路。

注意:在遍历欧拉电路时,每个边沿仅精确遍历一次。如果需要,可以多次遍历一个节点,但是不能多次遍历一条边。

例子:

方法:

  1. 首先,我们需要确保给定的无向图是否为欧拉图。如果无向图不是欧拉图,则无法将其转换为有向欧拉图。
    • 为了检查它,我们只需要计算每个节点的度数即可。如果所有节点的度数偶数且不等于0,则该图为欧拉式。
  2. 我们将使用“深度优先搜索遍历”来分配方向。
    • 在遍历时,我们将设置从父对象到子对象的边的方向。我们将维护一个地图,以确保仅对边进行一次遍历。

下面是上述算法的实现:

C++
// C++ program to Convert an
// Undirected Graph to a
// Directed Euler Circuit
 
#include 
using namespace std;
 
vector g[100];
 
// Array to store degree
// of nodes.
int deg[100] = { 0 };
 
// Map to keep a track of
// visited edges
map, int> m1;
 
// Vector to store the edge
// pairs
vector > v;
 
// Function to add Edge
void addEdge(int u, int v)
{
    deg[u]++;
    deg[v]++;
    g[u].push_back(v);
    g[v].push_back(u);
}
 
// Function to check if graph
// is Eulerian or not
bool CheckEulerian(int n)
{
    int check = 0;
    for (int i = 1; i <= n; i++) {
        // Checking if odd degree
        // or zero degree nodes
        // are present
        if (deg[i] % 2 || deg[i] == 0) {
            check = 1;
            break;
        }
    }
 
    // If any degree is odd or
    // any vertex has degree 0
    if (check) {
        return false;
    }
    return true;
}
// DFS Function to assign the direction
void DirectedEuler(int node,
                   vector g[])
{
    for (auto i = g[node].begin();
         i != g[node].end(); i++) {
        // Checking if edge is already
        // visited
        if (m1[make_pair(node, *i)]
            || m1[make_pair(*i, node)])
            continue;
 
        m1[make_pair(node, *i)]++;
 
        // Storing the edge
        v.push_back(make_pair(node, *i));
        DirectedEuler(*i, g);
    }
}
 
// Function prints the convert
// Directed graph
void ConvertDirectedEuler(int n,
                          int e)
{
    if (!CheckEulerian(n)) {
        cout << "NOT POSSIBLE"
             << endl;
        return;
    }
 
    DirectedEuler(1, g);
 
    // Printing directed edges
    for (auto i = v.begin();
         i != v.end(); i++) {
        cout << (*i).first
             << " "
             << (*i).second
             << endl;
    }
}
// Driver code
int main()
{
    int N = 5;
    int E = 6;
    addEdge(1, 2);
    addEdge(1, 5);
    addEdge(5, 2);
    addEdge(2, 4);
    addEdge(2, 3);
    addEdge(4, 3);
 
    ConvertDirectedEuler(N, E);
}


Java
// Java program to Convert an
// Undirected Graph to a
// Directed Euler Circuit
import java.io.*;
import java.lang.*;
import java.util.*;
 
class GFG{
 
// Pair class to store Key in map
static class Pair
{
    int first;
    int second;
 
    Pair(int first, int second)
    {
        this.first = first;
        this.second = second;
    }
 
    @Override
    public int hashCode()
    {
        final int prime = 31;
        int result = 1;
        result = prime * result + first;
        result = prime * result + second;
        return result;
    }
 
    @Override
    public boolean equals(Object obj)
    {
        if (this == obj)
            return true;
        if (obj == null)
            return false;
        if (getClass() != obj.getClass())
            return false;
        Pair other = (Pair) obj;
        if (first != other.first)
            return false;
        if (second != other.second)
            return false;
             
        return true;
    }
}
 
// To store graph
static ArrayList g[];
 
// Array to store degree of nodes.
static int deg[];
 
// Vector to store the edge pairs
static ArrayList v;
 
// Map to keep a track of
// visited edges
static HashMap m1;
 
@SuppressWarnings("unchecked")
static void initialize()
{
    g = new ArrayList[100];
    for(int i = 0; i < 100; i++)
        g[i] = new ArrayList<>();
 
    deg = new int[100];
    v = new ArrayList<>();
    m1 = new HashMap<>();
}
 
// Function to add Edge
static void addEdge(int u, int v)
{
    deg[u]++;
    deg[v]++;
    g[u].add(v);
    g[v].add(u);
}
 
// Function to check if graph
// is Eulerian or not
static boolean CheckEulerian(int n)
{
    int check = 0;
    for(int i = 1; i <= n; i++)
    {
         
        // Checking if odd degree
        // or zero degree nodes
        // are present
        if (deg[i] % 2 == 1 || deg[i] == 0)
        {
            check = 1;
            break;
        }
    }
 
    // If any degree is odd or
    // any vertex has degree 0
    if (check == 1)
    {
        return false;
    }
    return true;
}
 
// DFS Function to assign the direction
static void DirectedEuler(int node,
                          ArrayList g[])
{
    for(int i : g[node])
    {
         
        // Checking if edge is already
        // visited
        if (m1.containsKey(new Pair(node, i)) ||
            m1.containsKey(new Pair(i, node)))
            continue;
 
        m1.put(new Pair(node, i), 1);
 
        // Storing the edge
        v.add(new Pair(node, i));
        DirectedEuler(i, g);
    }
}
 
// Function prints the convert
// Directed graph
static void ConvertDirectedEuler(int n, int e)
{
    if (!CheckEulerian(n))
    {
        System.out.println("NOT POSSIBLE");
        return;
    }
 
    DirectedEuler(1, g);
 
    // Printing directed edges
    for(Pair p : v)
    {
        System.out.println(p.first + " " + p.second);
    }
}
 
// Driver Code
public static void main(String[] args)
{
    int N = 5;
    int E = 6;
 
    // To initialize
    initialize();
 
    addEdge(1, 2);
    addEdge(1, 5);
    addEdge(5, 2);
    addEdge(2, 4);
    addEdge(2, 3);
    addEdge(4, 3);
 
    ConvertDirectedEuler(N, E);
}
}
 
// This code is contributed by Kingash


Python3
# Python program to Convert an
# Undirected Graph to a
# Directed Euler Circuit
from typing import List
g = [[] for _ in range(100)]
 
# Array to store degree
# of nodes.
deg = [0 for _ in range(100)]
 
# Map to keep a track of
# visited edges
m1 = dict()
 
# Vector to store the edge
# pairs
v = []
 
# Function to add Edge
def addEdge(u: int, v: int) -> None:
    global deg, g
    deg[u] += 1
    deg[v] += 1
    g[u].append(v)
    g[v].append(u)
 
# Function to check if graph
# is Eulerian or not
def CheckEulerian(n: int) -> bool:
 
    check = 0
    for i in range(1, n + 1):
       
        # Checking if odd degree
        # or zero degree nodes
        # are present
        if (deg[i] % 2 or deg[i] == 0):
            check = 1
            break
 
    # If any degree is odd or
    # any vertex has degree 0
    if (check):
        return False
 
    return True
 
# DFS Function to assign the direction
def DirectedEuler(node: int, g: List[List[int]]) -> None:
 
    for i in g[node]:
       
        # Checking if edge is already
        # visited
        if ((node, i) in m1 or (i, node) in m1):
            continue
 
        if (node, i) not in m1:
            m1[(node, i)] = 0
        m1[(node, i)] += 1
 
        # Storing the edge
        v.append((node, i))
        DirectedEuler(i, g)
 
# Function prints the convert
# Directed graph
def ConvertDirectedEuler(n: int, e: int) -> None:
    if (not CheckEulerian(n)):
        print("NOT POSSIBLE")
        return
    DirectedEuler(1, g)
 
    # Printing directed edges
    for i in v:
        print("{} {}".format(i[0], i[1]))
 
# Driver code
if __name__ == "__main__":
 
    N = 5
    E = 6
    addEdge(1, 2)
    addEdge(1, 5)
    addEdge(5, 2)
    addEdge(2, 4)
    addEdge(2, 3)
    addEdge(4, 3)
 
    ConvertDirectedEuler(N, E)
 
# This code is contributed by sanjeev2552


输出:
1 2
2 5
5 1
2 4
4 3
3 2

时间复杂度: O((V + E)* log(E))
空间复杂度: O(max(V,E))