📌  相关文章
📜  具有不同到达时间的优先 CPU 调度 – 设置 2

📅  最后修改于: 2021-09-27 14:32:13             🧑  作者: Mango

先决条件 –优先调度程序 – 设置 1
优先级调度是一种非抢占式算法,是批处理系统中最常见的调度算法之一。如果两个进程具有相同的到达时间,则为每个进程分配最先到达时间(先到达时间少的进程),然后比较优先级(最高的进程在前)。此外,如果两个进程具有相同的优先级,则比较进程号(先少进程号)。在执行所有过程时重复此过程。
执行 –

  1. 首先输入进程的到达时间、突发时间和优先级。
  2. 第一个进程会调度到达时间最短的进程,如果两个或更多进程的到达时间最短,那么谁先调度谁的优先级高。
  3. 现在将根据流程的到达时间和优先级安排进一步的流程。 (这里我们假设优先级越低优先级越高)。如果两个进程优先级相同,则根据进程号进行排序。
    注意:在问题中,他们会清楚地提到哪个号码的优先级更高,哪个号码的优先级更低。
  4. 一旦所有进程都到达,我们可以根据它们的优先级来安排它们。

甘特图 –

例子 –

Input :
process no-> 1 2 3 4 5 
arrival time-> 0 1 3 2 4
burst time-> 3 6 1 2 4
priority-> 3 4 9 7 8
Output :
Process_no   arrival_time   Burst_time   Complete_time    Turn_Around_Time       Wating_Time
1             0               3                3                   3               0
2             1               6                9                   8               2 
3             3               1                16                  13              12
4             2               2                11                  9               7
5             4               4                15                  11              7
Average Wating Time is : 5.6
Average Turn Around time is : 8.8 
C++
// C++ implementation for Priority Scheduling with
//Different Arrival Time priority scheduling
/*1. sort the processes according to arrival time
2. if arrival time is same the acc to priority
3. apply fcfs
*/
 
#include 
 
using namespace std;
 
#define totalprocess 5
 
// Making a struct to hold the given input
 
struct process
{
int at,bt,pr,pno;
};
 
process proc[50];
 
/*
Writing comparator function to sort according to priority if
arrival time is same
*/
 
bool comp(process a,process b)
{
if(a.at == b.at)
{
return a.pr


Java
// Java implementation for Priority Scheduling with
//Different Arrival Time priority scheduling
import java.util.*;
 
/// Data Structure
class Process {
    int at, bt, pri, pno;
    Process(int pno, int at, int bt, int pri)
    {
        this.pno = pno;
        this.pri = pri;
        this.at = at;
        this.bt = bt;
    }
}
 
/// Gantt chart structure
class GChart {
    // process number, start time, complete time,
    // turn around time, waiting time
    int pno, stime, ctime, wtime, ttime;
}
 
// user define comparative method (first arrival first serve,
// if arrival time same then heigh priority first)
class MyComparator implements Comparator {
 
    public int compare(Object o1, Object o2)
    {
 
        Process p1 = (Process)o1;
        Process p2 = (Process)o2;
        if (p1.at < p2.at)
            return (-1);
 
        else if (p1.at == p2.at && p1.pri > p2.pri)
            return (-1);
 
        else
            return (1);
    }
}
 
 
// class to find Gantt chart
class FindGantChart {
    void findGc(LinkedList queue)
    {
 
        // initial time = 0
        int time = 0;
 
        // priority Queue sort data according
        // to arrival time or priority (ready queue)
        TreeSet prique = new TreeSet(new MyComparator());
 
        // link list for store processes data
        LinkedList result = new LinkedList();
 
        // process in ready queue from new state queue
        while (queue.size() > 0)
            prique.add((Process)queue.removeFirst());
 
        Iterator it = prique.iterator();
 
        // time set to according to first process
        time = ((Process)prique.first()).at;
 
        // scheduling process
        while (it.hasNext()) {
 
            // dispatcher dispatch the
            // process ready to running state
            Process obj = (Process)it.next();
 
            GChart gc1 = new GChart();
            gc1.pno = obj.pno;
            gc1.stime = time;
            time += obj.bt;
            gc1.ctime = time;
            gc1.ttime = gc1.ctime - obj.at;
            gc1.wtime = gc1.ttime - obj.bt;
 
            /// store the exxtreted process
            result.add(gc1);
        }
 
        // create object of output class and call method
        new ResultOutput(result);
    }
}


Python3
# Python3 implementation for Priority Scheduling with
# Different Arrival Time priority scheduling
"""1. sort the processes according to arrival time
   2. if arrival time is same the acc to priority
   3. apply fcfs """
  
totalprocess = 5
proc = []
for i in range(5):
    l = []
    for j in range(4):
        l.append(0)
    proc.append(l)
 
# Using FCFS Algorithm to find Waiting time
def get_wt_time( wt):
 
    # declaring service array that stores
    # cumulative burst time
    service = [0] * 5
 
    # Initialising initial elements
    # of the arrays
    service[0] = 0
    wt[0] = 0
 
    for i in range(1, totalprocess):
        service[i] = proc[i - 1][1] + service[i - 1]
        wt[i] = service[i] - proc[i][0] + 1
 
        # If waiting time is negative,
        # change it o zero
        if(wt[i] < 0) :    
            wt[i] = 0
         
def get_tat_time(tat, wt):
 
    # Filling turnaroundtime array
    for i in range(totalprocess):
        tat[i] = proc[i][1] + wt[i]
 
def findgc():
     
    # Declare waiting time and
    # turnaround time array
    wt = [0] * 5
    tat = [0] * 5
 
    wavg = 0
    tavg = 0
 
    # Function call to find waiting time array
    get_wt_time(wt)
     
    # Function call to find turnaround time
    get_tat_time(tat, wt)
 
    stime = [0] * 5
    ctime = [0] * 5
    stime[0] = 1
    ctime[0] = stime[0] + tat[0]
     
    # calculating starting and ending time
    for i in range(1, totalprocess):
        stime[i] = ctime[i - 1]
        ctime[i] = stime[i] + tat[i] - wt[i]
 
    print("Process_no\tStart_time\tComplete_time",
               "\tTurn_Around_Time\tWaiting_Time")
 
    # display the process details
    for i in range(totalprocess):
        wavg += wt[i]
        tavg += tat[i]
         
        print(proc[i][3], "\t\t", stime[i],
                         "\t\t", end = " ")
        print(ctime[i], "\t\t", tat[i], "\t\t\t", wt[i])
 
 
    # display the average waiting time
    # and average turn around time
    print("Average waiting time is : ", end = " ")
    print(wavg / totalprocess)
    print("average turnaround time : " , end = " ")
    print(tavg / totalprocess)
 
# Driver code
if __name__ =="__main__":
    arrivaltime = [1, 2, 3, 4, 5]
    bursttime = [3, 5, 1, 7, 4]
    priority = [3, 4, 1, 7, 8]
     
    for i in range(totalprocess):
 
        proc[i][0] = arrivaltime[i]
        proc[i][1] = bursttime[i]
        proc[i][2] = priority[i]
        proc[i][3] = i + 1
     
    # Using inbuilt sort function
    proc = sorted (proc, key = lambda x:x[2])
    proc = sorted (proc)
     
    # Calling function findgc for
    # finding Gantt Chart
    findgc()
 
# This code is contributed by
# Shubham Singh(SHUBHAMSINGH10)


输出:

Process_no Start_time Complete_time Turn_Around_Time Waiting_Time
1           1           4              3              0 
2           5           10             8              3
3           4           5              2              1
4          10           17             13             6
5          17           21             16             12
Average Waiting Time is : 4.4 
Average Turn Around time is : 8.4

时间复杂度: O(N * logN),其中 N 是进程总数。
辅助空间: O(N)