📌  相关文章
📜  按字典顺序打印所有不超过N个数字的单词

📅  最后修改于: 2021-05-14 03:03:15             🧑  作者: Mango

给定一个整数N ,任务是按照字典顺序以单词的形式打印从1N的所有数字(N <100000)。

例子 :

方法:请按照以下步骤解决问题:

  1. 初始化大小为N + 1的数组arr [] ,该数组将在每个索引处存储从1N的每个索引的字符串表示形式。
  2. 将所有从1N的数字转换为单词,并将其存储在其相应的索引处。
  3. 以升序对数组arr []进行排序。
  4. 打印数组arr []中存在的元素。

下面是上述方法的实现:

C++
// C++ program for the above approach
#include 
using namespace std;
 
// Function to convert a number to words
string convert_to_words(int n)
{
   
    // Stores the digits
    char num[1000];
    string str = to_string(n);
    strcpy(num, str.c_str());
    char* arr_ptr = &num[0];
    int len = strlen(arr_ptr);
    string ans = "";
 
    // Base cases
    if (len == 0)
    {
        ans += "Empty String";
        return ans;
    }
 
    // Stores strings of unit place
    string single_digits[]
        = { "zero", "one", "two",   "three", "four",
            "five", "six", "seven", "eight", "nine" };
 
    // Stores strings for corner cases
    string two_digits[]
        = { "",          "ten",      "eleven",  "twelve",
            "thirteen",  "fourteen", "fifteen", "sixteen",
            "seventeen", "eighteen", "nineteen" };
 
    // Stores strings for ten's place digits
    string tens_multiple[] = {
        "",      "",      "twenty",  "thirty", "forty",
        "fifty", "sixty", "seventy", "eighty", "ninety"
    };
 
    // Stores strings for powers of 10
    string tens_power[] = { "hundred", "thousand" };
 
    // If given number contains a single digit
    if (len == 1)
    {
        ans += single_digits[num[0] - '0'];
        return ans;
    }
 
    // Iterate over all the digits
    int x = 0;
    while (x < len)
    {
 
        // Represent first 2 digits in words
        if (len >= 3)
        {
            if (num[x] - '0' != 0)
            {
                ans += single_digits[num[x] - '0'];
                ans += " ";
                ans += tens_power[len - 3];
                ans += " ";
            }
            --len;
        }
 
        // Represent last 2 digits in words
        else
        {
 
            // Explicitly handle corner cases [10, 19]
            if (num[x] - '0' == 1)
            {
                int sum = num[x] - '0' + num[x] - '0';
                ans += two_digits[sum];
                return ans;
            }
 
            // Explicitly handle corner case 20
            else if (num[x] - '0' == 2
                     && num[x + 1] - '0' == 0)
            {
                ans += "twenty";
                return ans;
            }
 
            // For rest of the two digit
            // numbers i.e., 21 to 99
            else
            {
                int i = (num[x] - '0');
                if (i > 0)
                {
                    ans += tens_multiple[i];
                    ans += " ";
                }
                else
                    ans += "";
                ++x;
                if (num[x] - '0' != 0)
                    ans += single_digits[num[x] - '0'];
            }
        }
        ++x;
    }
    return "";
}
 
// Function to print all the numbers
// up to n in lexicographical order
static void lexNumbers(int n)
{
    vector s;
 
    // Convert all numbers in words
    for (int i = 1; i <= n; i++)
    {
        s.push_back(convert_to_words(i));
    }
 
    // Sort all strings
    sort(s.begin(), s.end());
    vector ans;
    for (int i = 0; i < n; i++)
        ans.push_back(s[i]);
 
    // Print answer
    for (int i = 0; i < n - 1; i++)
        cout << ans[i] << ", ";
    cout << ans[n - 1];
}
 
// Driver Code
int main()
{
    int n = 5;
    lexNumbers(n);
    return 0;
}
 
// This code is contributed by Dharanendra L V


Java
// Java program for the above approach
 
import java.util.*;
class GFG {
 
    // Function to convert a number to words
    static String convert_to_words(int n)
    {
        // Stores the digits
        char num[] = String.valueOf(n)
                         .toCharArray();
        int len = num.length;
        String ans = "";
 
        // Base cases
        if (len == 0) {
            ans += "Empty String";
            return ans;
        }
 
        // Stores strings of unit place
        String[] single_digits = new String[] {
            "zero", "one", "two", "three", "four",
            "five", "six", "seven", "eight", "nine"
        };
 
        // Stores strings for corner cases
        String[] two_digits = new String[] {
            "", "ten", "eleven", "twelve",
            "thirteen", "fourteen", "fifteen", "sixteen",
            "seventeen", "eighteen", "nineteen"
        };
 
        // Stores strings for ten's place digits
        String[] tens_multiple = new String[] {
            "", "", "twenty", "thirty", "forty",
            "fifty", "sixty", "seventy", "eighty", "ninety"
        };
 
        // Stores strings for powers of 10
        String[] tens_power
            = new String[] { "hundred", "thousand" };
 
        // If given number contains a single digit
        if (len == 1) {
            ans += single_digits[num[0] - '0'];
            return ans;
        }
 
        // Iterate over all the digits
        int x = 0;
        while (x < num.length) {
 
            // Represent first 2 digits in words
            if (len >= 3) {
                if (num[x] - '0' != 0) {
 
                    ans += single_digits[num[x] - '0'];
                    ans += " ";
                    ans += tens_power[len - 3];
                    ans += " ";
                }
 
                --len;
            }
 
            // Represent last 2 digits in words
            else {
 
                // Explicitly handle corner cases [10, 19]
                if (num[x] - '0' == 1) {
                    int sum = num[x] - '0' + num[x] - '0';
                    ans += two_digits[sum];
                    return ans;
                }
 
                // Explicitly handle corner case 20
                else if (num[x] - '0' == 2
                         && num[x + 1] - '0' == 0) {
                    ans += "twenty";
                    return ans;
                }
 
                // For rest of the two digit
                // numbers i.e., 21 to 99
                else {
                    int i = (num[x] - '0');
                    if (i > 0) {
                        ans += tens_multiple[i];
                        ans += " ";
                    }
                    else
                        ans += "";
                    ++x;
                    if (num[x] - '0' != 0)
                        ans += single_digits[num[x] - '0'];
                }
            }
            ++x;
        }
        return "";
    }
 
    // Function to print all the numbers
    // up to n in lexicographical order
    static void lexNumbers(int n)
    {
        Vector s = new Vector();
 
        // Convert all numbers in words
        for (int i = 1; i <= n; i++) {
            s.add(convert_to_words(i));
        }
 
        // Sort all strings
        Collections.sort(s);
        Vector ans
            = new Vector();
 
        for (int i = 0; i < n; i++)
            ans.add(s.get(i));
 
        // Print answer
        for (int i = 0; i < n - 1; i++)
            System.out.print(
                ans.get(i) + ", ");
 
        System.out.print(ans.get(n - 1));
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int n = 5;
        lexNumbers(n);
    }
}


Python3
# Python3 program for the
# above approach
 
# Function to convert a number
# to words
def convert_to_words(n):
 
    # Stores the digits
    num = str(n)
    length = len(num)
    ans = ""
 
    # Base cases
    if (length == 0):
        ans += "Empty String"
        return ans
 
    # Stores strings of unit place
    single_digits = ["zero", "one", "two",
                     "three", "four", "five",
                     "six", "seven", "eight", "nine"]
 
    # Stores strings for corner cases
    two_digits = ["", "ten", "eleven",
                  "twelve", "thirteen",
                  "fourteen", "fifteen",
                  "sixteen", "seventeen",
                  "eighteen", "nineteen"]
 
    # Stores strings for ten's place digits
    tens_multiple = ["", "", "twenty",
                     "thirty", "forty",
                     "fifty", "sixty",
                     "seventy", "eighty",
                     "ninety"]
 
    # Stores strings for powers of 10
    tens_power = ["hundred", "thousand"]
 
    # If given number contains a
    # single digit
    if (length == 1):
        ans += single_digits[ord(num[0]) -
                             ord('0')]
        return ans
 
    # Iterate over all the digits
    x = 0
     
    while (x < len(num)):
 
        # Represent first 2 digits
        # in words
        if (length >= 3) :
            if (num[x] - '0' != 0):
 
                ans += single_digits[ord(num[x]) -
                                     ord('0')]
                ans += " "
                ans += tens_power[len - 3]
                ans += " "
 
            length -= 1
 
        # Represent last 2 digits in words
        else :
 
            # Explicitly handle corner
            # cases[10, 19]
            if (ord(num[x]) -
                ord('0') == 1):
                sum = (ord(num[x]) - ord('0' ) +
                       ord(num[x]) - ord('0'))
                ans += two_digits[sum]
                return ans
             
            # Explicitly handle corner
            # case 20
            elif (ord(num[x]) -
                  ord('0') == 2 and
                  ord(num[x + 1]) -
                  ord('0') == 0):
                ans += "twenty"
                return ans
 
            # For rest of the two digit
            # numbers i.e., 21 to 99
            else:
                i = (ord(num[x]) -
                     ord('0'))
                if (i > 0) :
                    ans += tens_multiple[i]
                    ans += " "
                 
                else:
                  ans += ""
                  x += 1
                  if (ord(num[x]) -
                      ord('0') != 0):
                      ans += single_digits[ord(num[x]) -
                                         ord('0')]
        x += 1
    return ""
 
# Function to print all the numbers
# up to n in lexicographical order
def lexNumbers(n):
   
    s = []
 
    # Convert all numbers in
    # words
    for i in range(1, n + 1):
        s.append(convert_to_words(i))
 
    # Sort all strings
    s.sort()
    ans = []
 
    for i in range(n):
        ans.append(s[i])
 
    # Print answer
    for i in range(n - 1):
         print(ans[i], end = ", ")
 
    print(ans[n - 1], end = "")
 
# Driver Code
if __name__ == "__main__":
   
    n = 5
    lexNumbers(n)
 
# This code is contributed by Chitranayal


C#
// C# program for the above approach
using System;
using System.Collections.Generic;
 
class GFG{
 
// Function to convert a number to words
static String convert_to_words(int n)
{
     
    // Stores the digits
    char []num = String.Join("", n).ToCharArray();
    int len = num.Length;
    String ans = "";
 
    // Base cases
    if (len == 0)
    {
        ans += "Empty String";
        return ans;
    }
 
    // Stores strings of unit place
    String[] single_digits = new String[]{
        "zero", "one", "two", "three", "four",
        "five", "six", "seven", "eight", "nine" };
 
    // Stores strings for corner cases
    String[] two_digits = new String[]{
        "", "ten", "eleven", "twelve",
        "thirteen", "fourteen", "fifteen", "sixteen",
        "seventeen", "eighteen", "nineteen" };
 
    // Stores strings for ten's place digits
    String[] tens_multiple = new String[]{
        "", "", "twenty", "thirty", "forty",
        "fifty", "sixty", "seventy", "eighty", "ninety" };
 
    // Stores strings for powers of 10
    String[] tens_power = new String[]{ "hundred",
                                        "thousand" };
 
    // If given number contains a single digit
    if (len == 1)
    {
        ans += single_digits[num[0] - '0'];
        return ans;
    }
 
    // Iterate over all the digits
    int x = 0;
    while (x < num.Length)
    {
         
        // Represent first 2 digits in words
        if (len >= 3)
        {
            if (num[x] - '0' != 0)
            {
                ans += single_digits[num[x] - '0'];
                ans += " ";
                ans += tens_power[len - 3];
                ans += " ";
            }
            --len;
        }
 
        // Represent last 2 digits in words
        else
        {
             
            // Explicitly handle corner cases [10, 19]
            if (num[x] - '0' == 1)
            {
                int sum = num[x] - '0' +
                          num[x] - '0';
                ans += two_digits[sum];
                return ans;
            }
 
            // Explicitly handle corner case 20
            else if (num[x] - '0' == 2 &&
                     num[x + 1] - '0' == 0)
            {
                ans += "twenty";
                return ans;
            }
 
            // For rest of the two digit
            // numbers i.e., 21 to 99
            else
            {
                int i = (num[x] - '0');
                if (i > 0)
                {
                    ans += tens_multiple[i];
                    ans += " ";
                }
                else
                    ans += "";
                     
                ++x;
                 
                if (num[x] - '0' != 0)
                    ans += single_digits[num[x] - '0'];
            }
        }
        ++x;
    }
    return "";
}
 
// Function to print all the numbers
// up to n in lexicographical order
static void lexNumbers(int n)
{
    List s = new List();
 
    // Convert all numbers in words
    for(int i = 1; i <= n; i++)
    {
        s.Add(convert_to_words(i));
    }
 
    // Sort all strings
    s.Sort();
     
    List ans = new List();
 
    for(int i = 0; i < n; i++)
        ans.Add(s[i]);
 
    // Print answer
    for(int i = 0; i < n - 1; i++)
        Console.Write(ans[i] + ", ");
 
    Console.Write(ans[n - 1]);
}
 
// Driver Code
public static void Main(String[] args)
{
    int n = 5;
     
    lexNumbers(n);
}
}
 
// This code is contributed by Rajput-Ji


输出:
five, four, one, three, two

时间复杂度: O(NlogN)其中N是给定的整数。
辅助空间: O(N)